How Certain is Recommended Trust-Information?

Uwe Roth and Volker Fusenig
FSTC / CSC
University of Luxembourg
How Far Can Recommended Trust Be The Base of a Trust Decision?

- One expects that part of the information is given by malicious participants
- Trust-information given by a recommender may be reliable or not
- Condensing recommended trust-information of different sources to one value is not reasonable
Strategy for a Trust-Decision

- Keep recommended trust-information untouched
- X builds a network of relations, using recommended and direct information
- If X performs a trust-decision towards Y, the network of relations is transformed into a decision tree
- X chooses a path by random to reduce the influence of malicious nodes
- Passing a node, X chooses by random if it trusts the recommended information or not
- With higher chance paths are chosen, where it is more certain not to end in an un-trusted node
- At the end, the trust-decision is done on the base of a direct-trust-information or on the base of no information
Network of Reliability and Trust

- **Trust**: Complex structure, not a probability
- **Reliability**: probability that given information is reliable
Transformation of the Network Into a Decision Tree
Transformation of the Network Into a Decision Tree
Transformation of the Network Into a Decision Tree

Diagram showing nodes A, B, C, D, E, and Y with relationships and trust values as follows:
- A to B: 0.7
- B to C: 0.8
- C to D: 0.5
- A to E: 0.9
- E to Y: 0.4
- C to E: 0.6
- E to Y: 0.4
- Y to X: 0.4

Arrows indicate the direction of trust or reliability flows, with values for each connection.

Trust and Reliability

MTW'06 How Certain is Recommended Trust-Information? 7
Transformation of the Network Into a Decision Tree
Transformation of the Network Into a Decision Tree

A 0.6 0.4
C 0.7

X

0.9 0.4

B 0.8

0.6

E 0.7

0.4

Reliability

Trust

0.7 0.3

Y

D 0.5

T_Y^D

E

C

A

0.6

0.4

0.7

T_Y^E

T_Y^E

⊥

⊥
Transformation of the Network Into a Decision Tree

A 0.7 C 0.5
 \downarrow 0.8
 B 0.6 D
 \downarrow 0.7
 X 0.9

\begin{align*}
\text{Reliability} & \rightarrow T_Y^E \\
T_Y & \rightarrow \text{Trust}
\end{align*}

MTW'06 How Certain is Recommended Trust-Information? 10
Weighs of the Edges
Certainty

- **Certainty**: Probability to reach a trust information
- **Certainty** refers to the sub-tree if a node has been reached
- **Certainty** at a given node is the weight for the edge, pointing to the node
Weighs of the Edges

Certainty

MTW’06 How Certain is Recommended Trust-Information?
Weighs of the Edges

Certainty

\[C_Y^X = C_Y^{X \setminus \{X,Y\}} \]

\begin{align*}
 C_Y &= C_Y^{X \setminus \{X,Y\}} \\
 C_Y &= C_Y^{X \setminus \{X,Y\}}
\end{align*}

\[C_Y = C_Y^{X \setminus \{X,Y\}} \]

\[C_Y = C_Y^{X \setminus \{X,Y\}} \]
Weighs of the Edges
Certainty

\[C_{Y|C}^{X,(X,Y)} \]

\[C_{Y|E}^{X,(X,Y)} \]

\[C_{Y|A}^{X,(X,Y)} \]

\[C_{Y}^{X,(X,Y)} = C_{Y}^{X,(X,Y)} \]

\[C_{Y}^{X,(X,Y)} \]
Weighs of the Edges

Certainty

\[C_Y^X = C_Y^{X \{x,y\}} \]

\[C_{Y|C}^{X\{x,y\}} \]

\[C_{Y|E}^{X\{x,y\}} \]

\[C_{Y|A}^{X\{x,y\}} \]

\[C_Y^{C\{x,c,y\}} \]

\[C_Y^{C\{x,c,y\}} \]

\[C_Y^{C\{x,c,y\}} \]

\[0.6 \]

\[0.4 \]

\[0.7 \]

\[0.3 \]

\[0.5 \]

\[0.5 \]

\[0.5 \]
Weighs of the Edges

Certainty

\[C_{Y} = C_{Y,Y} \]

\[C_{Y}^{X,Y} \]

\[C_{Y|C}^{X,Y} \]

\[C_{Y|E}^{X,Y} \]

\[C_{Y|A}^{X,Y} \]

\[T_{Y}^{D} \]

\[\bot \]

\[T_{Y}^{E} \]

\[\bot \]
Weighs of the Edges

Certainty

\(C_Y = C^X_{\{x,y\}} \)

\(C^X_{Y|C} \)

\(C^X_{Y|E} \)

\(C^X_{Y|A} \)

\(C^X_{\{x,y\}} \)

\(C_{C|\{x,c,y\}} \)

\(T^D_Y \)

\(T^E_Y \)

\(0.5 \)

\(0.5 \)

\(0.5 \)

\(0.5 \)

\(0.7 \)

\(0.7 \)

\(0.3 \)

\(0.6 \)

\(0.4 \)

\(\bot \)
Weighs of the Edges
Certainty

\[
\frac{0.5^2 + 0.7^2}{0.5 + 0.7} = 0.617
\]
Weighs of the Edges
Certainty

\[
\begin{align*}
C_Y &= C_Y^{X,\{X,Y\}} \\
C_Y^{X,\{X,Y\}} &= C_Y^{X,\{X,Y\}} \\
C_Y^{X,\{X,Y\}} &= C_Y^{X,\{X,Y\}} \\
C_Y^{X,\{X,Y\}} &= C_Y^{X,\{X,Y\}}
\end{align*}
\]

MTW'06 How Certain is Recommended Trust-Information? 19
Weighs of the Edges
Certainty

\[0.6 \times 0.617 = 0.37 \]
Weighs of the Edges Certainty
Results So Far

- **Simulation** with networks of 20 nodes with reliability 50% - 100% shows
 - 3 hops: certainty < 50%
 - 7 hops: certainty < 25%
- The building of a decision-tree has **exponential complexity**
- Two trials to reduce its complexity:
 - Restricting hops to destination
 - Limiting the **minimal certainty** of a sub-tree
Simulation with Hop-Restricion
Simulation with Certainty-Restriction

![Simulation Graph]

- Without limitation
- Min. certainty 0.5
- Min. certainty 0.4
- Min. certainty 0.3
- Min. certainty 0.2
- Min. certainty 0.1
- Unlimited

MTW'06 How Certain is Recommended Trust-Information?

24
Influence of Malicious Participants

![Graph showing the influence of malicious participants on trust information certainty.](image)

-0.2
+0.1

- without attack
- 2 bad nodes giving bad values
- 4 bad nodes giving bad values
- 6 bad nodes giving bad values
- 2 bad nodes giving good values
- 4 bad nodes giving good values
- 6 bad nodes giving good values

hops to target

certainty
Results

- **Influence of malicious participant** lies in the percentage-magnitude like the percentage of malicious participants.
- **Limiting the tree** to 6-8 hops or 0.3-0.4 minimal certainty gives **acceptable results** compared to the unrestricted values (up to 107x faster).
- **Hop-restriction** is more **effective** than certainty-restriction (up to 3.1x faster).
- Still **exponential** complexity in **worst case**.
- Decision on the base of recommended trust-information of distance > 8 hops are getting **unreasonable**.
How Certain is Recommended Trust-Information?

Uwe Roth and Volker Fusenig
FSTC / CSC
University of Luxembourg